Skip to main content
Log in

Adaptation of an insect cell line of Spodoptera frugiperda to grow at 37°C: Characterization of an endodiploid clone

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Sf21 and Sf9 cell lines established from the lepidoptera Spodoptera frugiperda do not display major induction of heat shock proteins when exposed to a temperature of 37°C. After some months of adaptation at 37°C we obtained two new cell lines, Sf21-HT and SF9-HT, which have now been established for several years in our laboratory. The Sf9-HT line displays a slightly shorter doubling time at 37°C than the wild type at 28°C, but cell lethality gives rise to an earlier growth arrest. The composition of total lipid extract from heat-adapted cells reveals a higher sphingomyelin to phosphatidylcholine ratio and a higher percentage of saturated fatty acids, which are expected for the lower membrane fluidity, required for thermotolerance. The cell volume of Sf9-HT is doubled, and by flow cytometry we showed that the DNA content is twice that in the parental cell line. Karyotypic examination of metaphasic cells achieved under epifluorescence microscopy revealed a doubled chromosome number in Sf9-HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. L.; Minton, K. W.; Li, G. C., et al. Temperature-induced homeoviscous adaptation of Chinese hamster ovary cells. Biochim. Biophys. Acta 641:334–348; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. D.; Leitch, I. J. Nuclear DNA amount in angiosperms. Ann. Bot. 76:113–176; 1995.

    Article  CAS  Google Scholar 

  • Berry, S. J. Insect nucleic acids. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprhensive insect physiology, biochemistry and pharmacology, vol. 10, Oxford: Pergamon; 1985:219–253.

    Google Scholar 

  • Braunagel, S. C.; Part, R.; Belyavskyi, M., et al. Autographa californica nucleo-polyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology 244:195–211; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Carretero, M. T.; Carmona, M. J.; Diez, J. L. Thermotolerance and heat shock proteins in Chironomus. J. Insect. Physiol. 37:239–246; 1991.

    Article  CAS  Google Scholar 

  • Carvalho, M. G. C.; Freitas, M. S. Effect of continuous heat stress on cell growth and protein synthesis in Aedes albopictus. J. Cell. Physiol. 137: 455–461; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Clem, R. J.; Miller, L. K. Control of programmed cell death by the baculovirus genes p35 and iap. Mol. Cell. Biol. 14:5212–5222; 1994.

    PubMed  CAS  Google Scholar 

  • Cleverley, D. Z.; Geller, H. M.; Lenard, J. Characterization of cholesterol-free insect cells infectible by baculoviruses: effects of cholesterol on VSV fusion and infectivity and on cytotoxicity by influenza M2 protein. Exp. Cell Res. 233:288–296; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cress, A. E.; Culver, P. S.; Moon, T. E. et al. Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in culture. Cancer Res. 42:1716–1721; 1982.

    PubMed  CAS  Google Scholar 

  • Cress, A. E.; Gerner, E. W. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature 283:677–679; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Dean, R. L.; Atkinson, B. G. The acquisition of thermaltolerance in larvae of Calpodes ethlius (Lepidoptera) and the in situ and in vitro synthesis of heat-shock proteins. Can. J. Biochem. Cell Biol. 61:472–479; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Fertig, G.; Klöppinger, M.; Miltenburger, H. G. Cell cycle kinetics of insect cell cultures compared to mammalian cell cultures. Exp. Cell Res. 189:208–212; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fittinghoff, C. M.; Riddiford, L. M. Heat sensitivity and protein synthesis during heat-shock in the tobacco hornworm, Manduca sexta. J. Comp. Physiol. 160:349–356; 1990.

    CAS  Google Scholar 

  • Folch, J.; Lees, M.; Stanley, S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509; 1957.

    PubMed  CAS  Google Scholar 

  • Fuse, N.; Hirose, S.; Hayashi, S. Diploidy of Drosophila imaginal cells is maintained by a transcriptional repressor encoded by escargot. Genes Dev. 8:2270–2281; 1994.

    PubMed  CAS  Google Scholar 

  • Glaser, R. L.; Leach, T. J.; Ostrowski, S. E. The structure of heterochromatic DNA is altered in polyploid cells of Drosophila melanogaster. Mol. Cell. Biol. 17:1254–1263, 1997.

    PubMed  CAS  Google Scholar 

  • Grace, T. D. C. The morphology and physiology of cultured invertebrate cells. In: Vago, C., ed. Invertebrate tissue culture. Vol. 1 1971:171–209.

  • Gupta, Y. Chromosome studies in some Indian lepidopters. Chromosoma 15:540–561; 1964.

    Article  Google Scholar 

  • Helgen, J. C.; Fallon, A. M. Polybrene-mediated transfection of cultured lepidopteran cells induction of a Drosophila heat shock promoter. In Vitro Cell. Dev. Biol. 26:731–736; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hilwig, I.; Eipel, H. E. Characterization of insect cell lines by DNA content. Z. Angew. Zool. 87:216–220; 1979.

    Google Scholar 

  • Jackson, M. B.; Cronan, J. E., Jr. An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli. Biochim. Biophys. Acta. 512:472–479; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Konings, A. W. T.; Ruifrok, A. C. C. Role of membrane lipids and membrane fluidity in thermosensitivity and thermotolerance of mammalian cells. Radiation Res. 102:86–98; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M.; Suppes, D. L. Heat resistance and thermotolerance in a radiation-resistant cell line. Int. J. Radiat. Biol. 61:425–431; 1992.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavate of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lakey, D. L.; Treanor, J. J.; Betts, R. F. et al. Recombinant baculovirus influenza A hemagglutinin vaccines are well tolerated and immunogenic in healthy adults. J. Infect. Dis. 174:838–841; 1996.

    PubMed  CAS  Google Scholar 

  • Levi, M.; Wilson, P.; Nguyen, S., et al. In K562 and HL60 cells membrane aging during cell growth is associated with changes in cholesterol concentration. Mech. Aging Dev. 97:109–119; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev. Biol. 77:463–479; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S.; Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22:631–677; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mandala, S. M.; Thornton, R.; Tu, Z., et al. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc. Natl. Acad. Sci. USA 95:150–155; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Marheineke, K.; Grünewald, S.; Christie, W., et al. Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett. 441:49–52; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Marian, L. A. Production of triploid transgenic zebrafish, Brachydanio rerio (Hamilton). Indian J. Exp. Biol. 35:1237–1242; 1997.

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K.; Moller, G.; Petersen, N. S., et al. Specific protection from phenocopy induction by heat shock. Dev. Genet. 1:181–192; 1979.

    Article  CAS  Google Scholar 

  • Mitsuhashi, J. Invertebrate cell system applications. Vol. 1. Boca Raton, FL: CRC Press; 1989.

    Google Scholar 

  • Mitsuhashi, J.; Maramorosh, K. Leafhopper tissue culture: embryonic nymphal and imaginal tissue from aseptic insects. Contrib. Boyce Thompson Inst. 22:435–460; 1964.

    Google Scholar 

  • Monti, L.; Lemeunier, F.; Lalanne-Cassou, B. A chromosomal investigation of two closely related species of Spodoptera. C. R. Acad. Sci. (Paris) 321:275–282; 1998.

    Google Scholar 

  • Morris, T. D.; Miller, L. K. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J. Virol. 66:7397–7405; 1992.

    PubMed  CAS  Google Scholar 

  • Odier, F.; Vago, P.; Quiot, J. M. et al. Determination of DNA in densovirus-infected invertebrate cell line by flow cytometry. J. Invertebr. Pathol. 62:252–256; 1993.

    Article  CAS  Google Scholar 

  • Okazaki, S.; Tsuchida, K.; Maekawa, H., et al. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol. 13:1424–1432; 1993.

    PubMed  CAS  Google Scholar 

  • Prabhakara, K.; Murthy, S. K. Hyperthermic induction of premature chromosome condensation in human lymphocytes. Mutat. Res. 331:175–180; 1995.

    PubMed  CAS  Google Scholar 

  • Ritossa, F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18:571–573; 1962.

    Article  CAS  Google Scholar 

  • Rock, R. C. Incorporation of 14C-labelled non-lipid precursors into lipids of Plasmodium knolesi in vitro. Comp. Biochem. Physiol. 40:657–669; 1971.

    Article  CAS  Google Scholar 

  • Rouser, G.; Fleischer, S.; Yamamoto, A. Two dimensional thin layer chromatography separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496; 1979.

    Article  Google Scholar 

  • Shih, C. J.; Lin, R. W.; Wang, C. H. Establishment of a cell line from Spodoptera litura (Lepidoptera: Noctuidae) and replication of S. litura nuclear polyhedrosis virus in vitro. J. Invertebr. Pathol. 69:1–6; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S.; Merrill, A. H., Jr., Sphingolipid metabolism and cell growth regulation. FASEB J. 10:1388–1397; 1996.

    PubMed  CAS  Google Scholar 

  • Summers, M. D.; Smith, G. E. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agric. Exp. Stn. Bull. 1555; 1987.

  • Suzuki, T.; Hitomi, A.; Magee, P. T., et al. Correlation between polyploidy and auxotrophic segregation in the imperfect yeast Candida albicans. J. Bacteriol. 176:3345–3353; 1994.

    PubMed  CAS  Google Scholar 

  • Taylor, M.; Zawadzki, J.; Black, B., et al. Genome size and endopolyploidy in pyrethroid-resistant and susceptible strains of Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 86:1030–1034; 1993.

    Google Scholar 

  • Therkelsen, A. J.; Nielsen, A.; Koch, J., et al. Staining human telomeres with primed in situ labeling (PRINS). Cytogenet. Cell Genet. 68:115–118; 1995.

    PubMed  CAS  Google Scholar 

  • Treanor, J. J.; Betts, R. F.; Smith, G. E., et al. Evaluation, of a recombinant hemagglutinin expressed in insect cells as an influenza vaccine in young and elderly adults. J. Infect. Dis. 173:1467–1470; 1996.

    PubMed  CAS  Google Scholar 

  • Vago, P.; Aguilar, V.; Pignodel, C., et al. Profils cytométriques du contenu en ADN dans les néoplasies intra-épithéliales cervicales (CIN). Ann. Biol. Clin. 48:722–725; 1990.

    CAS  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. L., et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Vindelov, L. L.; Chiristensen, I. G.; Nissen, N. I. A detergent trypsin method for the preparation of nuclei for cytometry DNA analysis. Cytometry 3:323–327; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Whyard, S.; Wyatt, G. R.; Walker, V. K. The heat-shock response in Locusta migratoria. J. Comp. Physiol. B. 156:813–817; 1986.

    Article  Google Scholar 

  • Yeh, L.-H. P.; Bajpai, R. K.; Sun, G. Y., Membrane lipid metabolism and phospholipase activity in insect Spodoptera frugiperda 9 ovarian cells. Lipids 32:481–487; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Duonor-Cerutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerbal, M., Fournier, P., Barry, P. et al. Adaptation of an insect cell line of Spodoptera frugiperda to grow at 37°C: Characterization of an endodiploid clone. In Vitro Cell.Dev.Biol.-Animal 36, 117–124 (2000). https://doi.org/10.1290/1071-2690(2000)036<0117:AOAICL>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0117:AOAICL>2.0.CO;2

Key words

Navigation